

Navinum technical
& functional at a glance

http://navinum.net/

http://navinum.net/

Architecture

● One or more Navinum servers
– Local at the exhibition

– Remote in the internet

– LAMP + Symfony

● Any number of navinum clients
– Mobile (tablets, smartphones…)

– Static (PCs, Arduinos, proprietary devices…)

– Simple readers (RFID or any technology)

– Connected websites (any oauth2 enabled CMS)

Navinum server

● Handles (via the navinum package):
– A database

– A RESTful API

– An admin interface

● Optionally handles (via the navinum-websocket-sso package) :
– SSO (with an oauth2 server)

– Real-time notifications and clients live interactions (via websockets)

● Can synchronize with other servers.
– Currently, simple bi-directional synchronisation with Unisson,

– EAI/ESB integration is in the roadmap.

Navinum database

● Exhibitions
– Can be shared / replicated between museums

● Visit courses and experience units
– Courses alternatives (full or partial)

● Visitors (anonymous or not) and groups
– Profiles and parameters (l10n, a11y…)

– Gamification framework (XP, medals…)

● Full visitor log
– individual course, experience unit scores…

● Devices fleet (RFID, tablets…)

Notifications & triggers

● A generic kind of rule,
● Written in LUA
● Listens to internal database events

– profile change, score update, user XP update…

● Sends notifications or updates DB
– User notifications, medals, new XP, new scores…

Usage

● Implementations:
– http://navinum.net/category/references/

● Tutorials:
– (under writing)

● Installation:
– https://github.com/CapSciences/navinum/wiki/

http://navinum.net/category/references/
https://github.com/CapSciences/navinum/wiki/

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6

